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A B S T R A C T 

Objective: We explored how Deep Learning can be utilized to predict the prognosis of acute myeloid 

leukemia.  

Methods: Out of The Cancer Genome Atlas database, 94 acute myeloid leukemia cases were used in this 

study. Input data included age, 10 most common cytogenetic and 23 most common mutation results; output 

was the prognosis (diagnosis to death). In our Deep Learning network, autoencoders were stacked to form 

a hierarchical Deep Learning model from which raw data were compressed and organized, and high-level 

features were extracted. The network was written in R language and was designed to predict the prognosis 

of acute myeloid leukemia for a given case (diagnosis to death of either more or less than 730 days).  

Results: The Deep Learning network achieved an excellent accuracy of 83% in predicting prognosis.  

Conclusion: As a proof-of-concept study, our preliminary results demonstrated a practical application of 

Deep Learning in the future practice of prognostic prediction using next-generation sequencing data. 

 

                                          © 2020 Andy N.D. Nguyen. Hosting by Science Repository. All rights reserved.  

Introduction 

 

Acute myeloid leukemia (AML) is a neoplasm of the bone marrow that 

is caused by mutations or cytogenetic (chromosomal) abnormalities in 

the myeloid stem cells leading to the formation of clonal myeloblasts [1]. 

The highly proliferative cancer cells impede the formation of normal 

blood cells, leading to death if patients are left untreated.  In the United 

States, there are about 19,000 estimated new cases and approximately 

10,000 deaths from this malignancy in 2018 [2, 3]. There is an urgent 

need to find better treatments for this type of leukemia as only a quarter 

of the patients diagnosed with AML survive more than 5 years. AML 

includes many subtypes that share a common clinical presentation 

despite different types of mutations and genetic events. These genetic 

aberrations and mutations of leukemic cells often cause a profound 

impact on the cellular protein networks. A variety of technologies 

identifying the gene, mRNA, microRNA, and encoded pathologic 

protein have helped to predict the prognosis of AML patients. 

Interestingly, most AMLs only have only a few gene mutations, but the 

prognosis of AML patients is quite varied. A possible explanation for 

this diversity is differences in protein signaling.  

 

Previous studies on the association between prognosis of AML and a 

small number of cytogenetic abnormalities and mutations highlighted 

the clinical and biologic heterogeneity of AML [4-8]. The cytogenetic 

abnormalities with prognostic relevance have led to the adoption of a 

risk stratification model: three cytogenetically defined risk groups with 

significant differences in overall survival [9]. Although risk stratification 

for AML patients has been improved, a substantial number of patients 

still lack a clear correlation between any specific abnormalities and 

accurate prognostic prediction. More recently, mutational analysis of 

FLT3, NPM1, and CEBPA was shown to improve risk stratification for 

AML patients without karyotypic abnormalities [10].  

 

Recent advances in molecular studies, especially next-generation 

sequencing (NGS), have identified additional recurrent somatic 

mutations in patients with AML, including mutations in TET2, IDH1 
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and IDH2, DNMT3A, and PHF6, among others [7, 11-17]. Retrospective 

studies indicate that a subset of these mutations may have prognostic 

significance in AML, and these mutations may be the “missing” 

parameters in previous risk stratification models for patients with AML 

[7, 16, 18]. Whether including these novel mutations in mutational 

profiling with a larger set of genes would improve prognostication of 

AML has not been investigated in clinical studies. Numerous mutations 

in AML have been found with the recent application of NGS technique.  

The Cancer Genome Atlas (TCGA) study with 200 AML cases showed 

that the average number of mutations is 13 per case, and there are 23 

major recurrent mutations [19].  Such a large number of mutations in 

AML would certainly present a challenge in predicting prognosis for 

AML patients using multiple-variable statistical analysis. 

 

In this paper, we propose the use of Deep Learning (DL) methods based 

on unsupervised feature extraction to address the challenge described 

above. Most successful DL methods involve artificial neural networks, 

a family of models inspired by biological neural networks (i.e., the 

central nervous system, particularly the brain). In such an artificial neural 

network, artificial nodes (known as "neurons") are connected to form a 

network mimicking a biological neural network. In 1943, Warren 

McCulloch and Walter Pitts created a computational model for neural 

networks based on an algorithm called threshold logic [20]. Neural 

networks had not shown superior performance compared to other 

machine learning methods until the introduction of DL in 2006. DL 

differs from traditional machine learning in how representations are 

learned from the raw data. In fact, DL allows computational models that 

are composed of multiple processing layers based on neural networks to 

learn representations of data with multiple levels of abstraction [21]. 

Every layer of a DL system produces a representation of the observed 

patterns based on the data it receives as inputs from the previous layer, 

by optimizing a local unsupervised criterion [22]. 

 

The key aspect of deep learning is that these representations are not 

designed by human engineers, but they are learned from data using a 

general-purpose learning procedure. DL has recently shown impressive 

results in discovering intricate structures in high-dimensional data and 

obtained remarkable performances for object detection in images, speech 

recognition, natural language understanding and translation [23-27]. 

Relevant clinical-ready successes have been obtained in health care as 

well (e.g., identification of metastatic breast cancer on lymph node 

slides, aggregating features relevant to specific breast cancer subtypes, 

predicting drug therapeutic uses and indications), initiating the way 

toward a potential new generation of intelligent tools based on DL for 

real-world medical care [28-30]. 

 

We use stacked autoencoders, which form a deep network capable of 

achieving unsupervised learning, a type of machine-learning algorithm 

which draws inferences from the input data and does not use labeled 

training examples.  In contrast to previous methods of conventional 

neural networks where data must be strictly categorized to provide the 

appropriate label for supervised learning, the unlabeled data in DL can 

be used in the unsupervised training phase.  The resulting features from 

all training sets are then used as the basis for constructing the classifier.  

 

In this study, we use data from the TCGA database which consist of 200 

de novo AML cases and attempt to use DL which incorporates 

unsupervised feature training to find the correlation between 

cytogenetics, age, mutation, and prognosis [19]. To the best of our 

knowledge, unsupervised feature learning methods have never been 

applied to predict AML prognosis in this manner.  

 

Materials and Methods 

 

I Materials  

 

Our study was approved by the Institution Review Board at the 

University of Texas Health Science Center. Data from 200 cases of de 

novo AML were retrieved from the TCGA database (public domain) 

[17]. Demographic information shows: age 55±16.1, white 89%, black 

8%, others 3%; male 54%, female 46%; normal cytogenetics 47%. 

Molecular testing was performed on multiple platforms: Affymetrix 

U133 Plus 2, Illumina Infinium Human Methylation 450 BeadChip, and 

Affymetrix SNP Array 6.0. All karyotypes were analyzed by 

conventional G-banding in at least 20 metaphases. Results were 

available for cytogenetics, 260 gene mutations, and survival duration 

(diagnosis to death, DTD, in days) for each case [31]. As previously 

reported, in this database, a total of 23 genes were significantly mutated, 

and another 237 were mutated in two or more samples [31]. Nearly all 

samples had at least 1 nonsynonymous mutation. To use the most 

relevant data for analysis, only cases with the following 23 most 

common mutations (grouped according to categories) were extracted for 

our study:  

i. Activated signaling (signal transduction): FLT3-ITD, KIT, 

KRAS, NRAS, and PTPN11 

ii. Myeloid transcription factors (differentiation): NPM1, 

CEBPA, and RUNX1 

iii. Epigenetic regulation: DNMT3A, TET2, IDH2, IDH1, 

EZH2, and HNRNPK 

iv. Tumor suppressors: TP53, WT1, and PHF6 

v. Spliceosomes: U2AF1 

vi. Cohesins: SMC1A, SMC3, STAG2, and RAD21, 

vii. Non-annotated: FAM5C (BRINP3) 

 

Furthermore, the following 10 common cytogenetic abnormalities were 

seen in the patient cohort: t(8;21), inv(16), t(15;17), t(9:11), t(9;22), 

trisomy 8, del (7), del (5), del (20), and complex chromosomal 

abnormalities. Subsequently, only 94 cases with one or more of the 23 

common mutations were selected and included in this study.  These 

include cases with or without cytogenetic abnormalities. DTD was 

chosen as the prognostic parameter. For the 94 AML cases in this study, 

the mean DTD was 730 days. In summary, the total number of input 

parameters was 34, including 10 cytogenetic abnormalities, age, and 23 

mutations, whereas the sole outcome parameter was DTD. 

 

II Methods 

 

Our main analysis method was a DL neural network with stacked (multi-

layered) auto-encoder. The training was mostly based on unsupervised 

feature learning, which has been used successfully for image and audio 

recognition [32, 33]. Our DL neural network was designed with the R 

language. R is a programming language for statistical computing and 

graphics supported by the R Foundation for Statistical Computing [34]. 

R was derived from the S language which was originally developed at 
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Bell Laboratories by John Chambers and colleagues. R's popularity has 

increased substantially in recent years with advances in machine learning 

[35]. The source code for the R software environment is written 

primarily in Java, C, FORTRAN, and also in R itself.  R is freely 

available under the GNU General Public License, and pre-compiled 

binary versions are provided for various operating systems, including 

UNIX, Windows, and MacOS. In this study, we used many DL functions 

obtained from various R packages which are available from the 

Comprehensive R Archive Network [36].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A Deep Learning Neural Network (Stacked Autoencoder Network) with Unsupervised Training in Pre-training Phase and Supervised Training in 

the Fine-tuning phase. 

 

The stacked autoencoder neural network illustrated in (Figure 1), 

incorporates two training phases: pre-training with unsupervised 

learning method, and fine-tuning, which is similar to the supervised 

back-propagation in conventional neural networks [37, 38]. During the 

pre-training phase, the output from one layer is subsequently used as the 

input for the next output layer. The output from each layer essentially 

represents an approximation of the input data constructed from a limited 

number of features learned by the hidden units of the network. The 

stacked autoencoder is constructed by multiple layers in the neural 

network (i.e., input layer, hidden layers, and output layer). For 

simplicity, only 2 layers are illustrated in (Figure 1). The sigmoid 

function is used as an activation function in hidden layers. In the fine-

tuning phase, the back-propagation method minimizes the error with an 

additional sparsity penalty [39]. The features learned in the pre-training 

phase are subsequently used with a set of labeled data for specific status 

(positive or negative) to train a classifier. A classifier can be defined as 

a function that receives values of various features from training examples 

(cytogenetics, age, and mutations as independent variables) and provides 

an output, which predicts the category that each training example 

belongs to (prognosis or DTD as dependent variable) [40]. For the fine-

tuning phase, we used the linear function for the classifier.  

 

For the initial analysis, all 34 attributes (10 cytogenetic abnormalities, 

age, and 23 mutations) were used to train the network to predict 

prognosis (good prognosis vs. poor prognosis, i.e., DTD is either more 

than or less than 730 days).  A tenfold cross-validation method was used 

to obtain comprehensive validation results due to the small number of 

samples (94 cases). In this validation, a small subset of data (10 out of 

94 cases) was excluded each time for training; the resultant network 

(trained on the remaining 84 cases) would be used to predict the 

prognostic status for each case in the excluded subset. The process was 

repeated until all 94 cases in the data set had been validated. The overall 

accuracy of the neural network is the mean of those for all the validated 

subsets. Subsequent analyses, using trial and error with different 

numbers of input parameters, are expected to show the optimal input for 

the most accurate prediction. 

 

Results 

 

The initial use of the full attribute set (10 common cytogenetic 

abnormalities, age, and 23 common mutations) yielded 81% accuracy 

for predicting good prognosis of an AML case (day-to-death > 730 

days). This accuracy corresponded to a sensitivity of 74% and a 

specificity of 86% in predicting good prognosis of an AML case. The 

initial analysis showed that the following 14 attributes rank highest in 

term of predicting power among the 34 attributes: age, 7 cytogenetic 

abnormalities [tri8, del5, del7, complex chromosomal abnormalities, 

t(8;21), inv(16), t(15; 17)], and 6 mutations [FLT3, NPM1, TP53, 

DNMT3, KIT, CEBPA]. Using these top-ranked 14 attributes, the DL 

network subsequently achieved a slightly better accuracy of 83%, with a 

sensitivity of 80% and a specificity of 85%. The accuracy in predicting 

prognostic status with different attribute sets by the DL network is 

summarized in (Table 1). The optimal number of attributes for this study 

was 14. It appeared that fewer than 14 attributes contain insufficient data 

for prediction. Conversely, more than 14 attributes introduced 

background noise, compromising accuracy.  
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Table 1: Accuracy in Predicting Prognostic Status with Different 

Attribute Sets by the Deep Learning Network. 

 34 Attribute Set 14 Attribute Set 

Conventional  Validation 

Set No. 

Accuracy Validation 

Set No. 

Accuracy 

1 90% 1 90% 

2 80% 2 70% 

3 80% 3 80% 

4 90% 4 90% 

5 100% 5 90% 

6 80% 6 80% 

7 70% 7 70% 

8 70% 8 80% 

9 80% 9 100% 

10 75% 10 80% 

Mean= 81%* Mean= 83% ** 

*   corresponding to sensitivity of 74%, and specificity of 86%. 

** corresponding to sensitivity of 80%, and specificity of 85%. 

 

The use of machine learning algorithms frequently involves careful 

tuning of network configuration and learning parameters. This tuning 

often requires experience, and sometimes brute-force search [41]. 

During network training, we have tried various configurations for the 

neural network to achieve optimal accuracy and noted that our DL 

network performed best with 3 hidden layers consisting of 20, 15, and 

10 nodes, respectively. The optimal learning parameters for our neural 

network, obtained through trial and error, were as following [42]. 

Learning rate: 1.0, Momentum: 1.0, batch size=10, sigmoid function for 

activation and output. 

 

We also noted that the 3 general types of attributes (cytogenetics, age, or 

mutations) are almost equally important in predicting prognosis. By 

separately excluding cytogenetics, age, and mutations in the analysis, the 

accuracy for prognosis prediction degraded significantly to 67%, 61%, 

and 74%, respectively. 

 

Discussion  

 

DL algorithms are new and innovative tools of research in machine 

learning to extract complex data representations at high levels of 

abstraction. In fact, DL has been cited as one of the 10 breakthrough 

technologies in 2013 by MIT Technology Review [43]. The most 

important contribution of DL algorithms is to develop a hierarchical 

architecture of data, where higher-level features are defined in terms of 

lower-level features. The hierarchical learning architecture of DL 

algorithms is motivated by the biological structure of the primary 

sensorial areas of the neocortex in the human brain, which automatically 

extracts abstract features from the underlying data [44-46]. DL 

algorithms rely on large amounts of unsupervised data, and typically 

learn data representations in a greedy layer-wise fashion [47, 48]. Studies 

have shown that data representations obtained from stacking up 

nonlinear feature extractors (such as autoencoders used in our study) 

often yield better machine classification results [49-51]. 

 

DL applications have produced outstanding results in several areas, 

including speech recognition, computer vision, and natural language 

processing [28, 47, 48, 52-59]. A recent challenge hosted by the 

International Symposium on Biomedical Imaging (ISBI) in 2016 lead to 

a successful DL system for automated detection of metastatic cancer 

from whole slide images of sentinel lymph nodes [60]. Data-intensive 

technologies as well as improved computational and data storage 

resources have contributed to Big Data science [61]. Technology-based 

companies such as Microsoft, Google, Yahoo, and Amazon have 

maintained databases that are measured in exabyte proportions or larger. 

Various private and public organizations have invested in Big Data 

Analytics to address their needs in business and research, making this an 

exciting area of data science research [62].  

 

In the present study, we used DL to predict the prognosis of AML. 

Specifically, we relied on a set of attributes (cytogenetics, age, and 

mutations) to predict prognostic status in newly diagnosed AML 

patients. We implemented a DL network consisting of autoencoders that 

were stacked to form hierarchical deep models from which high-level 

features were compressed, organized, and extracted, without labeled 

training data. We showed how DL, which incorporates unsupervised 

feature training, can be used to predict prognosis using cytogenetics, age, 

and mutations with excellent results (accuracy of 83%, sensitivity of 

80%, and specificity of 85%).   

 

The main limitation of our preliminary study was the relatively small 

size of cohorts (94 cases out of 200 from the TCGA database). 

Nevertheless, this study provided excellent preliminary results for future 

studies that may include many more cases, more cytogenetics and 

mutation data, and other clinical data such as co-morbidity index. With 

more data, it is expected that the accuracy would be even higher than 

that from this preliminary study. 

 

Conclusion 

 

DL method, a disruptive technology, is predicted to be an integrated part 

of future practice in molecular diagnosis and prognostic prediction using 

NGS data. Our preliminary study demonstrated a practical application in 

this area. The successful validation of this DL software is of tremendous 

value to the personalized treatment of AML patients, i.e., stratifying 

treatment, especially bone marrow/stem cell transplant for each patient 

based on predicted prognosis. The software’s database can be 

continually kept up to date by adding new patients’ data (with more 

patients, with additional tests, etc.) to improve its predicting ability. 

Furthermore, input ranking techniques in the neural net can detect 

critical parameters which impact prognosis, and this helps to identify sets 

of important data to predict prognosis (novel patterns). While the amount 

of data used here was relatively modest, this study provided a proof-of-

concept for using the DL network as a more accurate approach for 

modeling big data in cancer genomics.  
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